The weak separation in higher dimensions

Autor: Danilov, Vladimir I., Karzanov, Alexander V., Koshevoy, Gleb A.
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: For an odd integer $r>0$ and an integer $n>r$, we introduce a notion of weakly $r$-separated collections of subsets of $[n]=\{1,2,\ldots,n\}$. When $r=1$, this corresponds to the concept of weak separation introduced by Leclerc and Zelevinsky. In this paper, extending results due to Leclerc-Zelevinsky, we develop a geometric approach to establish a number of nice combinatorial properties of maximal weakly r-separated collections. As a supplement, we also discuss an analogous concept when $r$ is even.
Comment: 28 pages, 3 figures
Databáze: arXiv