The weak separation in higher dimensions
Autor: | Danilov, Vladimir I., Karzanov, Alexander V., Koshevoy, Gleb A. |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For an odd integer $r>0$ and an integer $n>r$, we introduce a notion of weakly $r$-separated collections of subsets of $[n]=\{1,2,\ldots,n\}$. When $r=1$, this corresponds to the concept of weak separation introduced by Leclerc and Zelevinsky. In this paper, extending results due to Leclerc-Zelevinsky, we develop a geometric approach to establish a number of nice combinatorial properties of maximal weakly r-separated collections. As a supplement, we also discuss an analogous concept when $r$ is even. Comment: 28 pages, 3 figures |
Databáze: | arXiv |
Externí odkaz: |