Wiedemann-Franz Law For Hot QCD Matter in a Color String Percolation Scenario

Autor: Sahoo, Pragati, Sahoo, Raghunath, Tiwari, Swatantra Kumar
Rok vydání: 2019
Předmět:
Zdroj: Phys. Rev. D 100, 051503 (2019)
Druh dokumentu: Working Paper
DOI: 10.1103/PhysRevD.100.051503
Popis: Transport coefficients serve as important probes in characterizing the QCD matter created in high-energy heavy-ion collisions. Thermal and electrical conductivities as transport coefficients have got special significance in studying the time evolution of the created matter. We have adopted color string percolation approach for the estimation of thermal conductivity ($\kappa$), electrical conductivity ($\sigma_{el}$) and their ratio, which is popularly known as Wiedemann-Franz law in condensed matter physics. The ratio $\kappa/\sigma_{el}T$, which is also known as Lorenz number ($\mathbb{L}$) is studied as a function of temperature and is compared with various theoretical calculations. We observe that the thermal conductivity for hot QCD medium is almost temperature independent in the present formalism and matches with the results obtained in ideal equation of state (EOS) for quark-gluon plasma with fixed coupling constant ($\alpha_s$). The obtained Lorenz number is compared with the Stefan-Boltzmann limit for an ideal gas. We observe that a hot QCD medium with color degrees of freedom behaves like a free electron gas.
Comment: No change in the MS. arXiv admin note: text overlap with arXiv:1804.07980
Databáze: arXiv