Autor: |
Guzman, J., Lischke, A., Neilan, M. |
Rok vydání: |
2019 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We construct smooth finite elements spaces on Powell-Sabin triangulations that form an exact sequence. The first space of the sequence coincides with the classical $C^1$ Powell-Sabin space, while the others form stable and divergence-free yielding pairs for the Stokes problem. We develop degrees of freedom for these spaces that induce projections that commute with the differential operators. |
Databáze: |
arXiv |
Externí odkaz: |
|