Effective Context and Fragment Feature Usage for Named Entity Recognition

Autor: Nosirova, Nargiza, Xu, Mingbin, Jiang, Hui
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper, we explore a new approach to named entity recognition (NER) with the goal of learning from context and fragment features more effectively, contributing to the improvement of overall recognition performance. We use the recent fixed-size ordinally forgetting encoding (FOFE) method to fully encode each sentence fragment and its left-right contexts into a fixed-size representation. Next, we organize the context and fragment features into groups, and feed each feature group to dedicated fully-connected layers. Finally, we merge each group's final dedicated layers and add a shared layer leading to a single output. The outcome of our experiments show that, given only tokenized text and trained word embeddings, our system outperforms our baseline models, and is competitive to the state-of-the-arts of various well-known NER tasks.
Comment: 7 pages, 1 figure, 7 tables (Rejected by EMNLP 2018 with score 3-4-4). arXiv admin note: text overlap with arXiv:1904.03300
Databáze: arXiv