Galois coinvariants of the unramified Iwasawa modules of multiple $\mathbb{Z}_p$-extensions
Autor: | Miura, Takashi, Murakami, Kazuaki, Otsuki, Rei, Okano, Keiji |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For a CM-field $K$ and an odd prime number $p$, let $\widetilde K'$ be a certain multiple $\mathbb{Z}_p$-extension of $K$. In this paper, we study several basic properties of the unramified Iwasawa module $X_{\widetilde K'}$ of $\widetilde K'$ as a $\mathbb{Z}_p[[{\rm Gal}(\widetilde K'/K)]]$-module. Our first main result is a description of the order of a Galois coinvariant of $X_{\widetilde K'}$ in terms of the characteristic power series of the unramified Iwasawa module of the cyclotomic $\mathbb{Z}_p$-extension of $K$ under a certain assumption on the splitting of primes above $p$. Second one is that if $K$ is an imaginary quadratic field and $p$ does not split in $K$, we give a necessary and sufficient condition for which $X_{\widetilde K}$ is $\mathbb{Z}_p[[{\rm Gal}(\widetilde K/K)]]$-cyclic under several assumptions on the Iwasawa $\lambda$-invariant and the ideal class group of $K$, where $\widetilde K$ is the $\mathbb{Z}_p^2$-extension of $K$. Comment: v2: 24pages. replace Lemma 3.1 and the proof, typos corrected |
Databáze: | arXiv |
Externí odkaz: |