Generative Adversarial Networks: recent developments
Autor: | Zamorski, Maciej, Zdobylak, Adrian, Zięba, Maciej, Świątek, Jerzy |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In traditional generative modeling, good data representation is very often a base for a good machine learning model. It can be linked to good representations encoding more explanatory factors that are hidden in the original data. With the invention of Generative Adversarial Networks (GANs), a subclass of generative models that are able to learn representations in an unsupervised and semi-supervised fashion, we are now able to adversarially learn good mappings from a simple prior distribution to a target data distribution. This paper presents an overview of recent developments in GANs with a focus on learning latent space representations. Comment: 10 pages |
Databáze: | arXiv |
Externí odkaz: |