Degree spectra for transcendence in fields

Autor: Kalimullin, Iskander, Miller, Russell, Schoutens, Hans
Rok vydání: 2019
Předmět:
Zdroj: Computing with Foresight and Industry: 15th Conference on Computability in Europe, CiE 2019, eds. F. Manea, B. Martin, D. Paulusma, & G. Primiero, Lecture Notes in Computer Science 11558 (Berlin: Springer-Verlag, 2019), 205--216
Druh dokumentu: Working Paper
DOI: 10.1007/978-3-030-22996-2_18
Popis: We show that for both the unary relation of transcendence and the finitary relation of algebraic independence on a field, the degree spectra of these relations may consist of any single computably enumerable Turing degree, or of those c.e. degrees above an arbitrary fixed $\Delta^0_2$ degree. In other cases, these spectra may be characterized by the ability to enumerate an arbitrary $\Sigma^0_2$ set. This is the first proof that a computable field can fail to have a computable copy with a computable transcendence basis.
Databáze: arXiv