$\operatorname{SL}(n)$ invariant valuations on super-coercive convex functions

Autor: Mussnig, Fabian
Rok vydání: 2019
Předmět:
Zdroj: Canadian Journal of Mathematics 73 (2021), 108-130
Druh dokumentu: Working Paper
DOI: 10.4153/S0008414X19000531
Popis: All non-negative, continuous, $\operatorname{SL}(n)$ and translation invariant valuations on the space of super-coercive, convex functions on $\mathbb{R}^n$ are classified. Furthermore, using the invariance of the function space under the Legendre transform, a classification of non-negative, continuous, $\operatorname{SL}(n)$ and dually translation invariant valuations is obtained. In both cases, different functional analogs of the Euler characteristic, volume and polar volume are characterized.
Databáze: arXiv