Three-dimensional sol manifolds and complex kleinian groups
Autor: | Barrera, Waldemar, Garcia, Rene, Navarrete, Juan |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.2140/pjm.2018.294.1 |
Popis: | We give a topological description of the quotient space $\Omega(G)/G$ in the case $G \subset PSL(3, \mathbb{C})$ is a discrete subgroup acting on $\mathbb{P}^2_\mathbb{C}$ and the maximum number of complex projective lines in general position contained in Kulkarni's limit set, $\Lambda(G)$, is 4. We also give a topological description of the quotient space $\Omega(G)/G$ in the case $G$ a lattice of Heisenberg's group. Comment: 15 pages |
Databáze: | arXiv |
Externí odkaz: |