Three-dimensional sol manifolds and complex kleinian groups

Autor: Barrera, Waldemar, Garcia, Rene, Navarrete, Juan
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
DOI: 10.2140/pjm.2018.294.1
Popis: We give a topological description of the quotient space $\Omega(G)/G$ in the case $G \subset PSL(3, \mathbb{C})$ is a discrete subgroup acting on $\mathbb{P}^2_\mathbb{C}$ and the maximum number of complex projective lines in general position contained in Kulkarni's limit set, $\Lambda(G)$, is 4. We also give a topological description of the quotient space $\Omega(G)/G$ in the case $G$ a lattice of Heisenberg's group.
Comment: 15 pages
Databáze: arXiv