Autor: |
del Rio, R., Franco, A. L. |
Rok vydání: |
2019 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We study invariance for eigenvalues of families of selfadjoint Sturm-Liouville operators with local point interactions. In a probabilistic setting, we show that a point is either an eigenvalue for all members of the family or only for a set of measure zero. Using classical oscillation theory it is possible to decide whether the second situation happens. The operators do not need to be measurable or ergodic. This generalizes the well-known fact that for ergodic operators a point is eigenvalue with probability zero. |
Databáze: |
arXiv |
Externí odkaz: |
|