Uniform boundedness for Brauer groups of forms in positive characteristic
Autor: | Ambrosi, Emiliano |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Mathematical Research Letters, Vol. 28, No. 2, pp. 315-329, 2021 |
Druh dokumentu: | Working Paper |
DOI: | 10.4310/MRL.2021.v28.n2.a1 |
Popis: | Let $k$ be a finitely generated field of characteristic $p>0$ and $X$ a smooth and proper scheme over $k$. Recent works of Cadoret, Hui and Tamagawa show that, if $X$ satisfies the $\ell$-adic Tate conjecture for divisors for every prime $\ell\neq p$, the Galois invariant subgroup $Br(X_{\overline k})[p']^{\pi_1(k)}$ of the prime-to-$p$ torsion of the geometric Brauer group of $X$ is finite. The main result of this note is that, for every integer $d\geq 1$, there exists a constant $C:=C(X,d)$ such that for every finite field extension $k \subseteq k'$ with $[k':k]\leq d$ and every $(\overline k/k')$-form $Y$ of $X$ one has $|(Br(Y\times_{k'}\overline k)[p']^{\pi_1(k')}|\leq C$. The theorem is a consequence of general results on forms of compatible systems of $\pi_1(k)$-representations and it extends to positive characteristic a recent result of Orr and Skorobogatov in characteristic zero. Comment: 8 pages |
Databáze: | arXiv |
Externí odkaz: |