Anisotropic exceptional points of arbitrary order

Autor: Xiao, Yi-Xin, Zhang, Zhao-Qing, Hang, Zhi Hong, Chan, C. T.
Rok vydání: 2019
Předmět:
Zdroj: Phys. Rev. B 99, 241403 (2019)
Druh dokumentu: Working Paper
DOI: 10.1103/PhysRevB.99.241403
Popis: A pair of anisotropic exceptional points (EPs) of arbitrary order are found in a class of non-Hermitian random systems with asymmetric hoppings. Both eigenvalues and eigenvectors exhibit distinct behaviors when these anisotropic EPs are approached from two orthogonal directions in the parameter space. For an order-$N$ anisotropic EP, the critical exponents $\nu$ of phase rigidity are $(N-1)/2$ and $N-1$, respectively. These exponents are universal within the class. The order-$N$ anisotropic EPs split and trace out multiple ellipses of EPs of order $2$ in the parameter space. For some particular configurations, all the EP ellipses coalesce and form a ring of EPs of order $N$. Crossover to the conventional order-$N$ EPs with $\nu=(N-1)/N$ is discussed.
Comment: Main text contains 14 pages and 4 figures
Databáze: arXiv