Anisotropic exceptional points of arbitrary order
Autor: | Xiao, Yi-Xin, Zhang, Zhao-Qing, Hang, Zhi Hong, Chan, C. T. |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Phys. Rev. B 99, 241403 (2019) |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevB.99.241403 |
Popis: | A pair of anisotropic exceptional points (EPs) of arbitrary order are found in a class of non-Hermitian random systems with asymmetric hoppings. Both eigenvalues and eigenvectors exhibit distinct behaviors when these anisotropic EPs are approached from two orthogonal directions in the parameter space. For an order-$N$ anisotropic EP, the critical exponents $\nu$ of phase rigidity are $(N-1)/2$ and $N-1$, respectively. These exponents are universal within the class. The order-$N$ anisotropic EPs split and trace out multiple ellipses of EPs of order $2$ in the parameter space. For some particular configurations, all the EP ellipses coalesce and form a ring of EPs of order $N$. Crossover to the conventional order-$N$ EPs with $\nu=(N-1)/N$ is discussed. Comment: Main text contains 14 pages and 4 figures |
Databáze: | arXiv |
Externí odkaz: |