On $L^p$-convergence of the Biggins martingale with complex parameter

Autor: Iksanov, Alexander, Liang, Xingang, Liu, Quansheng
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: We prove necessary and sufficient conditions for the $L^p$-convergence, $p>1$, of the Biggins martingale with complex parameter in the supercritical branching random walk. The results and their proofs are much more involved (especially in the case $p\in (1,2)$) than those for the Biggins martingale with real parameter. Our conditions are ultimate in the case $p\geq 2$ only.
Comment: submitted, 16 pages
Databáze: arXiv