Robinson-Schensted-Knuth correspondence in the representation theory of the general linear group over a non-archimedean local field
Autor: | Gurevich, Maxim, Lapid, Erez |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Represent. Theory 25 (2021), 644-678 |
Druh dokumentu: | Working Paper |
DOI: | 10.1090/ert/578 |
Popis: | We construct new "standard modules" for the representations of general linear groups over a local non-archimedean field. The construction uses a modified Robinson-Schensted-Knuth correspondence for Zelevinsky's multisegments. Typically, the new class categorifies the basis of Doubilet, Rota, and Stein for matrix polynomial rings, indexed by bitableaux. Hence, our main result provides a link between the dual canonical basis (coming from quantum groups) and the DRS basis. Comment: With an appendix by Mark Shimozono |
Databáze: | arXiv |
Externí odkaz: |