Robinson-Schensted-Knuth correspondence in the representation theory of the general linear group over a non-archimedean local field

Autor: Gurevich, Maxim, Lapid, Erez
Rok vydání: 2019
Předmět:
Zdroj: Represent. Theory 25 (2021), 644-678
Druh dokumentu: Working Paper
DOI: 10.1090/ert/578
Popis: We construct new "standard modules" for the representations of general linear groups over a local non-archimedean field. The construction uses a modified Robinson-Schensted-Knuth correspondence for Zelevinsky's multisegments. Typically, the new class categorifies the basis of Doubilet, Rota, and Stein for matrix polynomial rings, indexed by bitableaux. Hence, our main result provides a link between the dual canonical basis (coming from quantum groups) and the DRS basis.
Comment: With an appendix by Mark Shimozono
Databáze: arXiv