Quaternionic contact structure with integrable complementary distribution
Autor: | Kamishima, Yoshinobu |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study positive definite quaternionic contact $(4n+3)$-manifolds ($qc$-manifold for short). Just like the $CR$-structure contains the class of Sasaki manifolds, the $qc$-structure admits a class of $3$-Sasaki manifolds with integrable distribution isomorphic to $\mathfrak{su}(2)$. A big difference concerning the integrable complementary $qc$-distribution $V$ of the $qc$-structure from $3$-Sasaki structure is the existence of Lie algebra not isomorphic to $\mathfrak{su}(2)$. We take up non-compact $qc$-manifolds to find out a salient feature of topology and geometry in case $V$ generates the $qc$-transformations $R^3$. Comment: 34 pages |
Databáze: | arXiv |
Externí odkaz: |