Discrete Fourier transform associated with generalized Schur polynomials
Autor: | van Diejen, J. F., Emsiz, E. |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Proc. Amer. Math. Soc. 146 (2018), no. 8, 3459-3472 |
Druh dokumentu: | Working Paper |
DOI: | 10.1090/proc/14036 |
Popis: | We prove the Plancherel formula for a four-parameter family of discrete Fourier transforms and their multivariate generalizations stemming from corresponding generalized Schur polynomials. For special choices of the parameters, this recovers the sixteen classic discrete sine- and cosine transforms DST-1,...,DST-8 and DCT-1,...,DCT-8, as well as recently studied (anti-)symmetric multivariate generalizations thereof. Comment: 14 pages, LaTeX |
Databáze: | arXiv |
Externí odkaz: |