Constant curvature holomorphic solutions of the supersymmetric grassmannian sigma model: the case of $G(2,4)$
Autor: | Hussin, V., Lafrance, M., Yurdusen, I. |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We explore the constant curvature holomorphic solutions of the supersymmetric grassmannian sigma model $G(M,N)$ using in particular the gauge invariance of the model. Supersymmetric invariant solutions are constructed via generalizing a known result for ${C}P^{N-1}$. We show that some other such solutions also exist. Indeed, considering the simplest case of $G(2,N)$ model, we give necessary and sufficient conditions for getting the constant curvature holomorphic solutions. Since, all the constant curvature holomorphic solutions of the bosonic $G(2,4)$ $\sigma$-model are known, we treat this example in detail. Comment: 15 pages, no figures |
Databáze: | arXiv |
Externí odkaz: |