Autor: |
Higuchi, Kojiro, Lempp, Steffen, Raghavan, Diip, Stephan, Frank |
Rok vydání: |
2019 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We show that the order dimension of the partial order of all finite subsets of $\kappa$ under set inclusion is ${\log}_{2}({\log}_{2}(\kappa))$ whenever $\kappa$ is an infinite cardinal. We also show that the order dimension of any locally countable partial ordering $(P, <)$ of size $\kappa^+$, for any $\kappa$ of uncountable cofinality, is at most $\kappa$. In particular, this implies that it is consistent with ZFC that the dimension of the Turing degrees under partial ordering can be strictly less than the continuum. |
Databáze: |
arXiv |
Externí odkaz: |
|