A note on rainbow saturation number of paths

Autor: Cao, Shujuan, Ma, Yuede, Taoqiu, Zhenyu
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: For a fixed graph $F$ and an integer $t$, the \dfn{rainbow saturation number} of $F$, denoted by $sat_t(n,\mathfrak{R}(F))$, is defined as the minimum number of edges in a $t$-edge-colored graph on $n$ vertices which does not contain a \dfn{rainbow copy} of $F$, i.e., a copy of $F$ all of whose edges receive a different color, but the addition of any missing edge in any color from $[t]$ creates such a rainbow copy. Barrus, Ferrara, Vardenbussche and Wenger prove that $sat_t(n,\mathfrak{R}(P_\ell))\ge n-1$ for $\ell\ge 4$ and $sat_t(n,\mathfrak{R}(P_\ell))\le \lceil \frac{n}{\ell-1} \rceil \cdot \binom{\ell-1}{2}$ for $t\ge \binom{\ell-1}{2}$, where $P_\ell$ is a path with $\ell$ edges. In this short note, we improve the upper bounds and show that $sat_t(n,\mathfrak{R}(P_\ell))\le \lceil \frac{n}{\ell} \rceil \cdot \left({{\ell-2}\choose {2}}+4\right)$ for $\ell\ge 5$ and $t\ge 2\ell-5$.
Comment: 9 pages
Databáze: arXiv