Equation cohomologique d'un automorphisme affine hyperbolique du tore
Autor: | Zeggar, Abdellatif |
---|---|
Jazyk: | francouzština |
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study the discrete cohomological equation of a hyperbolic affine automorphism Y of the torus (whose linear part is not necessarily diagonalisable). More precisely ; if d is the cobord operator defined by : d (h) = h-hoY for every element h of the Fr\'echet space E of the differentiable functions on the torus, we show that the image Im(d) is a closed of E and that consequently the space of cohomology H^1(Y; E):=E/Im(d) is a nontrivial Fr\'echet space. We also prove the existence of a continuous linear operator L defined from Im(d) to E such that for every element g of Im(d), the image f = L(g) is a solution of the discrete cohomological equation f-foY = g. Comment: in French |
Databáze: | arXiv |
Externí odkaz: |