Autor: |
Salman, Majdi, Klemencic, Georgina M, Mandal, Soumen, Manifold, Scott, Mustafa, Luqman, Williams, Oliver A, Giblin, Sean R |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Journal of Applied Physics 125, 224503 (2019) |
Druh dokumentu: |
Working Paper |
DOI: |
10.1063/1.5090958 |
Popis: |
Based on the superconducting quantum interference device (SQUID) equations described by the resistively- and capacitively-shunted junction model coupled to the equation of motion of a damped harmonic oscillator, we provide simulations to quantitatively describe the interaction between a dc SQUID and an integrated doubly clamped cantilever. We have chosen to investigate an existing experimental configuration and have explored the motion of the cantilever and the reaction of the SQUID as a function of the voltage-flux $V(\Phi)$ characteristics. We clearly observe the Lorentz force back-action interaction and demonstrate how a sharp transition state drives the system into a nonlinear-like regime, and modulates the cantilever displacement amplitude, simply by tuning the SQUID parameters. |
Databáze: |
arXiv |
Externí odkaz: |
|