Good reduction of K3 Surfaces in equicharacteristic p

Autor: Chiarellotto, Bruno, Lazda, Christopher, Liedtke, Christian
Rok vydání: 2019
Předmět:
Zdroj: Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 23 (2022), no. 1, 483-500
Druh dokumentu: Working Paper
Popis: We show that for smooth and proper varieties over local fields with no non-trivial vector fields, good reduction descends over purely inseparable extensions. We use this to extend the Neron-Ogg-Shafarevich criterion for K3 surfaces to the equicharacteristic $p>0$ case.
Comment: 15 pages, comments welcome!
Databáze: arXiv