Good reduction of K3 Surfaces in equicharacteristic p
Autor: | Chiarellotto, Bruno, Lazda, Christopher, Liedtke, Christian |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 23 (2022), no. 1, 483-500 |
Druh dokumentu: | Working Paper |
Popis: | We show that for smooth and proper varieties over local fields with no non-trivial vector fields, good reduction descends over purely inseparable extensions. We use this to extend the Neron-Ogg-Shafarevich criterion for K3 surfaces to the equicharacteristic $p>0$ case. Comment: 15 pages, comments welcome! |
Databáze: | arXiv |
Externí odkaz: |