Nonparametric Curve Alignment

Autor: Mattar, Marwan, Ross, Michael, Learned-Miller, Erik
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: Congealing is a flexible nonparametric data-driven framework for the joint alignment of data. It has been successfully applied to the joint alignment of binary images of digits, binary images of object silhouettes, grayscale MRI images, color images of cars and faces, and 3D brain volumes. This research enhances congealing to practically and effectively apply it to curve data. We develop a parameterized set of nonlinear transformations that allow us to apply congealing to this type of data. We present positive results on aligning synthetic and real curve data sets and conclude with a discussion on extending this work to simultaneous alignment and clustering.
Comment: 4 pages, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2009
Databáze: arXiv