Infinitesimal and Infinite Numbers as an Approach to Quantum Mechanics
Autor: | Benci, Vieri, Baglini, Lorenzo Luperi, Simonov, Kyrylo |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Quantum 3, 137 (2019) |
Druh dokumentu: | Working Paper |
DOI: | 10.22331/q-2019-05-03-137 |
Popis: | Non-Archimedean mathematics is an approach based on fields which contain infinitesimal and infinite elements. Within this approach, we construct a space of a particular class of generalized functions, ultrafunctions. The space of ultrafunctions can be used as a richer framework for a description of a physical system in quantum mechanics. In this paper, we provide a discussion of the space of ultrafunctions and its advantages in the applications of quantum mechanics, particularly for the Schr\"{o}dinger equation for a Hamiltonian with the delta function potential. Comment: 18 pages, 2 figures |
Databáze: | arXiv |
Externí odkaz: |