Some results concerning the $\mathsf{SRT}^2_2$ vs. $\mathsf{COH}$ problem

Autor: Cholak, Peter A., Dzhafarov, Damir D., Hirschfeldt, Denis R., Patey, Ludovic
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: The $\mathsf{SRT}^2_2$ vs.\ $\mathsf{COH}$ problem is a central problem in computable combinatorics and reverse mathematics, asking whether every Turing ideal that satisfies the principle $\mathsf{SRT}^2_2$ also satisfies the principle $\mathsf{COH}$. This paper is a contribution towards further developing some of the main techniques involved in attacking this problem. We study several principles related to each of $\mathsf{SRT}^2_2$ and $\mathsf{COH}$, and prove results that highlight the limits of our current understanding, but also point to new directions ripe for further exploration.
Databáze: arXiv