Autor: |
Cholak, Peter A., Dzhafarov, Damir D., Hirschfeldt, Denis R., Patey, Ludovic |
Rok vydání: |
2019 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
The $\mathsf{SRT}^2_2$ vs.\ $\mathsf{COH}$ problem is a central problem in computable combinatorics and reverse mathematics, asking whether every Turing ideal that satisfies the principle $\mathsf{SRT}^2_2$ also satisfies the principle $\mathsf{COH}$. This paper is a contribution towards further developing some of the main techniques involved in attacking this problem. We study several principles related to each of $\mathsf{SRT}^2_2$ and $\mathsf{COH}$, and prove results that highlight the limits of our current understanding, but also point to new directions ripe for further exploration. |
Databáze: |
arXiv |
Externí odkaz: |
|