Existence and compactness theory for ALE scalar-flat K\'ahler surfaces
Autor: | Han, Jiyuan, Viaclovsky, Jeff A. |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Forum of Mathematics, Sigma 8 (2020) e1 |
Druh dokumentu: | Working Paper |
DOI: | 10.1017/fms.2019.42 |
Popis: | Our main result in this article is a compactness result which states that a noncollapsed sequence of asymptotically locally Euclidean (ALE) scalar-flat K\"ahler metrics on a minimal K\"ahler surface whose K\"ahler classes stay in a compact subset of the interior of the K\"ahler cone must have a convergent subsequence. As an application, we prove the existence of global moduli spaces of scalar-flat K\"ahler ALE metrics for several infinite families of K\"ahler ALE spaces. Comment: 50 pages |
Databáze: | arXiv |
Externí odkaz: |