Zero-cycles on Cancian-Frapporti surfaces
Autor: | Laterveer, Robert |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | An old conjecture of Voisin describes how $0$-cycles on a surface $S$ should behave when pulled-back to the self-product $S^m$ for $m>p_g(S)$. We show that Voisin's conjecture is true for a $3$-dimensional family of surfaces of general type with $p_g=q=2$ and $K^2=7$ constructed by Cancian and Frapporti, and revisited by Pignatelli-Polizzi. Comment: 10 pages, to appear in Annali dell'Univ. di Ferrara, comments welcome |
Databáze: | arXiv |
Externí odkaz: |