Zero-cycles on Cancian-Frapporti surfaces

Autor: Laterveer, Robert
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: An old conjecture of Voisin describes how $0$-cycles on a surface $S$ should behave when pulled-back to the self-product $S^m$ for $m>p_g(S)$. We show that Voisin's conjecture is true for a $3$-dimensional family of surfaces of general type with $p_g=q=2$ and $K^2=7$ constructed by Cancian and Frapporti, and revisited by Pignatelli-Polizzi.
Comment: 10 pages, to appear in Annali dell'Univ. di Ferrara, comments welcome
Databáze: arXiv