A Geometric Characterization of the Symmetrized Bidisc

Autor: Agler, Jim, Lykova, Zinaida, Young, N. J.
Rok vydání: 2019
Předmět:
Zdroj: Journal of Mathematical Analysis and Applications, 2019
Druh dokumentu: Working Paper
DOI: 10.1016/j.jmaa.2019.01.027
Popis: The symmetrized bidisc \[ G \stackrel{\rm{def}}{=}\{(z+w,zw):|z|<1,\ |w|<1\} \] has interesting geometric properties. While it has a plentiful supply of complex geodesics and of automorphisms, there is nevertheless a unique complex geodesic $\mathcal{R}$ in $G$ that is invariant under all automorphisms of $G$. Moreover, $G$ is foliated by those complex geodesics that meet $\mathcal{R}$ in one point and have nontrivial stabilizer. We prove that these properties, together with two further geometric hypotheses on the action of the automorphism group of $G$, characterize the symmetrized bidisc in the class of complex manifolds.
Comment: 45 pages, 1 figure, with index. To appear in J. Math. Anal. Applic
Databáze: arXiv