On traveling wave solutions in full parabolic Keller-Segel chemotaxis systems with logistic source
Autor: | Salako, R. B., Shen, W. |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | This paper is concerned with traveling wave solutions of the following full parabolic Keller-Segel chemotaxis system with logistic source, \begin{equation} \begin{cases} u_t=\Delta u -\chi\nabla\cdot(u\nabla v)+u(a-bu),\quad x\in\mathbb{R}^N \cr \tau v_t=\Delta v-\lambda v +\mu u,\quad x\in \mathbb{R}^N, \end{cases}(1) \end{equation} where $\chi, \mu,\lambda,a,$ and $b$ are positive numbers, and $\tau\ge 0$. Among others, it is proved that if $b>2\chi\mu$ and $\tau \geq \frac{1}{2}(1-\frac{\lambda}{a})_{+} ,$ then for every $c\ge 2\sqrt{a}$, (1) has a traveling wave solution $(u,v)(t,x)=(U^{\tau,c}(x\cdot\xi-ct),V^{\tau,c}(x\cdot\xi-ct))$ ($\forall\, \xi\in\mathbb{R}^N$) connecting the two constant steady states $(0,0)$ and $(\frac{a}{b},\frac{\mu}{\lambda}\frac{a}{b})$, and there is no such solutions with speed $c$ less than $2\sqrt{a}$, which improves considerably the results established in \cite{SaSh3}, and shows that (1) has a minimal wave speed $c_0^*=2\sqrt a$, which is independent of the chemotaxis. Comment: arXiv admin note: text overlap with arXiv:1901.00045 |
Databáze: | arXiv |
Externí odkaz: |