Variational Convergence of Discrete Elasticae
Autor: | Scholtes, Sebastian, Schumacher, Henrik, Wardetzky, Max |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We discuss a discretization by polygonal lines of the Euler-Bernoulli bending energy and of Euler elasticae under clamped boundary conditions. We show Hausdorff convergence of the set of almost minimizers of the discrete bending energy to the set of smooth Euler elasticae under mesh refinement in (i) the $W^{1,\infty}$-topology for piecewise-linear interpolation and in (ii) the $W^{2,p}$-topology, $p \in{[2,\infty[}$, using a suitable smoothing operator to create $W^{2,p}$-curves from polygons. Comment: 38 pages, 6 figures |
Databáze: | arXiv |
Externí odkaz: |