Full-speed Fuzzing: Reducing Fuzzing Overhead through Coverage-guided Tracing

Autor: Nagy, Stefan, Hicks, Matthew
Rok vydání: 2018
Předmět:
Druh dokumentu: Working Paper
Popis: Of coverage-guided fuzzing's three main components: (1) testcase generation, (2) code coverage tracing, and (3) crash triage, code coverage tracing is a dominant source of overhead. Coverage-guided fuzzers trace every testcase's code coverage through either static or dynamic binary instrumentation, or more recently, using hardware support. Unfortunately, tracing all testcases incurs significant performance penalties---even when the overwhelming majority of testcases and their coverage information are discarded because they do not increase code coverage. To eliminate needless tracing by coverage-guided fuzzers, we introduce the notion of coverage-guided tracing. Coverage-guided tracing leverages two observations: (1) only a fraction of generated testcases increase coverage, and thus require tracing; and (2) coverage-increasing testcases become less frequent over time. Coverage-guided tracing works by encoding the current frontier of code coverage in the target binary so that it self-reports when a testcase produces new coverage---without tracing. This acts as a filter for tracing; restricting the expense of tracing to only coverage-increasing testcases. Thus, coverage-guided tracing chooses to tradeoff increased coverage-increasing-testcase handling time for the ability to execute testcases initially at native speed. To show the potential of coverage-guided tracing, we create an implementation based on the static binary instrumentor Dyninst called UnTracer. We evaluate UnTracer using eight real-world binaries commonly used by the fuzzing community. Experiments show that after only an hour of fuzzing, UnTracer's average overhead is below 1%, and after 24-hours of fuzzing, UnTracer approaches 0% overhead, while tracing every testcase with popular white- and black-box-binary tracers AFL-Clang, AFL-QEMU, and AFL-Dyninst incurs overheads of 36%, 612%, and 518%, respectively.
Comment: To appear in the 40th IEEE Symposium on Security and Privacy, May 20--22, 2019, San Francisco, CA, USA
Databáze: arXiv