Finite groups of rank two which do not involve $Qd(p)$
Autor: | Kızmaz, Muhammet Yasir, Yalcin, Ergun |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $p>3$ be a prime. We show that if $G$ is a finite group with $p$-rank equal to 2, then $G$ involves $Qd(p)$ if and only if $G$ $p'$-involves $Qd(p)$. This allows us to use a version of Glauberman's ZJ-theorem to give a more direct construction of finite group actions on mod-$p$ homotopy spheres. We give an example to illustrate that the above conclusion does not hold for $p \leq 3$. Comment: Revised version, to appear in Proc. Amer. Math. Soc |
Databáze: | arXiv |
Externí odkaz: |