Automatic quantification of the LV function and mass: a deep learning approach for cardiovascular MRI

Autor: Curiale, Ariel H., Colavecchia, Flavio D., Mato, German
Rok vydání: 2018
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1016/j.cmpb.2018.12.002
Popis: Objective: This paper proposes a novel approach for automatic left ventricle (LV) quantification using convolutional neural networks (CNN). Methods: The general framework consists of one CNN for detecting the LV, and another for tissue classification. Also, three new deep learning architectures were proposed for LV quantification. These new CNNs introduce the ideas of sparsity and depthwise separable convolution into the U-net architecture, as well as, a residual learning strategy level-to-level. To this end, we extend the classical U-net architecture and use the generalized Jaccard distance as optimization objective function. Results: The CNNs were trained and evaluated with 140 patients from two public cardiovascular magnetic resonance datasets (Sunnybrook and Cardiac Atlas Project) by using a 5-fold cross-validation strategy. Our results demonstrate a suitable accuracy for myocardial segmentation ($\sim$0.9 Dice's coefficient), and a strong correlation with the most relevant physiological measures: 0.99 for end-diastolic and end-systolic volume, 0.97 for the left myocardial mass, 0.95 for the ejection fraction and 0.93 for the stroke volume and cardiac output. Conclusion: Our simulation and clinical evaluation results demonstrate the capability and merits of the proposed CNN to estimate different structural and functional features such as LV mass and EF which are commonly used for both diagnosis and treatment of different pathologies. Significance: This paper suggests a new approach for automatic LV quantification based on deep learning where errors are comparable to the inter- and intra-operator ranges for manual contouring. Also, this approach may have important applications on motion quantification.
Comment: Accepted in Computer Methods and Programs in Biomedicine. https://www.sciencedirect.com/science/article/pii/S0169260718311696?via%3Dihub
Databáze: arXiv