Optimal bounds for a Gaussian Arithmetic-Geometric type mean by quadratic and contraharmonic means

Autor: Shen, Junxuan
Rok vydání: 2018
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper, we present the best possible parameters $\alpha_i, \beta_i\ (i=1,2,3)$ and $\alpha_4,\beta_4\in(1/2,1)$ such that the double inequalities \begin{align*} \alpha_1Q(a,b)+(1-\alpha_1)C(a,b)&0$ with $a\neq b$, where $Q(a,b)$, $C(a,b)$ and $AG(a,b)$ are the quadratic, contraharmonic and Arithmetic-Geometric means, and $AG_{Q,C}(a,b)=AG[Q(a,b),C(a,b)]$. As consequences, we present new bounds for the complete elliptic integral of the first kind. Keywords: Arithmetic-Geometric mean, Complete elliptic integral, Quadratic mean, Contraharmonic mean
Comment: 13 pages
Databáze: arXiv