Subgroups of word hyperbolic groups in rational dimension 2
Autor: | Arora, Shivam, Martínez-Pedroza, Eduardo |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | A result of Gersten states that if $G$ is a hyperbolic group with integral cohomological dimension $\mathsf{cd}_{\mathbb{Z}}(G)=2$ then every finitely presented subgroup is hyperbolic. We generalize this result for the rational case $\mathsf{cd}_{\mathbb{Q}}(G)=2$. In particular, our result applies to the class of torsion-free hyperbolic groups $G$ with $\mathsf{cd}_{\mathbb{Z}}(G)=3$ and $\mathsf{cd}_{\mathbb{Q}}(G)=2$ discovered by Bestvina and Mess. Comment: First published in: Arora Shivam, Martinez Pedroza Eduardo, SUBGROUPS OF WORD HYPERBOLIC GROUPS IN RATIONAL DIMENSION 2. Groups Geom. Dyn |
Databáze: | arXiv |
Externí odkaz: |