Subgroups of word hyperbolic groups in rational dimension 2

Autor: Arora, Shivam, Martínez-Pedroza, Eduardo
Rok vydání: 2018
Předmět:
Druh dokumentu: Working Paper
Popis: A result of Gersten states that if $G$ is a hyperbolic group with integral cohomological dimension $\mathsf{cd}_{\mathbb{Z}}(G)=2$ then every finitely presented subgroup is hyperbolic. We generalize this result for the rational case $\mathsf{cd}_{\mathbb{Q}}(G)=2$. In particular, our result applies to the class of torsion-free hyperbolic groups $G$ with $\mathsf{cd}_{\mathbb{Z}}(G)=3$ and $\mathsf{cd}_{\mathbb{Q}}(G)=2$ discovered by Bestvina and Mess.
Comment: First published in: Arora Shivam, Martinez Pedroza Eduardo, SUBGROUPS OF WORD HYPERBOLIC GROUPS IN RATIONAL DIMENSION 2. Groups Geom. Dyn
Databáze: arXiv