Combinatorial modifications of Reeb graphs and the realization problem

Autor: Michalak, Łukasz Patryk
Rok vydání: 2018
Předmět:
Zdroj: Discrete Comput. Geom. 65 (2021), 1038-1060
Druh dokumentu: Working Paper
DOI: 10.1007/s00454-020-00260-6
Popis: We prove that, up to homeomorphism, any graph subject to natural necessary conditions on orientation and the cycle rank can be realized as the Reeb graph of a Morse function on a given closed manifold $M$. Along the way, we show that the Reeb number $\mathcal{R}(M)$, i.e. the maximum cycle rank among all Reeb graphs of functions on $M$, is equal to the corank of fundamental group $\pi_1(M)$, thus extending a previous result of Gelbukh to the non-orientable case.
Comment: 18 pages; The final publication is available at link.springer.com: https://doi.org/10.1007/s00454-020-00260-6
Databáze: arXiv