Zero-one laws for k-variable first-order logic of sparse random graphs
Autor: | Razafimahatratra, A. S., Zhukovskii, M. |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we prove that for every positive $\varepsilon$, there exists an $\alpha\in(1/(k-1),1/(k-1)+\varepsilon)$ such that the binomial random graph $G(n,n^{-\alpha})$ does not obey 0-1 law w.r.t. first order sentences with k variables. In contrast, for every $\alpha\in(0,1/(k-1)]$, $G(n,n^{-\alpha})$ obeys 0-1 law w.r.t. this logic. |
Databáze: | arXiv |
Externí odkaz: |