Neuromorphic hardware as a self-organizing computing system
Autor: | Khacef, Lyes, Girau, Bernard, Rougier, Nicolas, Upegui, Andres, Miramond, Benoit |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | This paper presents the self-organized neuromorphic architecture named SOMA. The objective is to study neural-based self-organization in computing systems and to prove the feasibility of a self-organizing hardware structure. Considering that these properties emerge from large scale and fully connected neural maps, we will focus on the definition of a self-organizing hardware architecture based on digital spiking neurons that offer hardware efficiency. From a biological point of view, this corresponds to a combination of the so-called synaptic and structural plasticities. We intend to define computational models able to simultaneously self-organize at both computation and communication levels, and we want these models to be hardware-compliant, fault tolerant and scalable by means of a neuro-cellular structure. Comment: Published in IEEE World Congress on Computational Intelligence (WCCI), International Workshop: Neuromorphic Hardware in Practice and Use (NHPU), Jul. 2018, Rio de Janeiro, Brazil |
Databáze: | arXiv |
Externí odkaz: |