Random walk on comb-type subsets of Z^2
Autor: | Csaki, Endre, Foldes, Antonia |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study the path behavior of the simple symmetric walk on some comb-type subsets of Z^2 which are obtained from Z^2 by removing all horizontal edges belonging to certain sets of values on the y-axis. We obtain some strong approximation results and discuss their consequences. Comment: 25 pages |
Databáze: | arXiv |
Externí odkaz: |