$\ell^2$-Betti numbers of random rooted simplicial complexes

Autor: Schrödl, Michael
Rok vydání: 2018
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1007/s00229-019-01131-y
Popis: We define unimodular measures on the space of rooted simplicial complexes and associate to each measure a chain complex and a trace function. As a consequence, we can define $\ell^2$-Betti numbers of unimodular random rooted simplicial complexes and show that they are continuous under Benjamini-Schramm convergence.
Comment: Added references and Example 19; small corrections in the proof of Lemma 4
Databáze: arXiv