$\ell^2$-Betti numbers of random rooted simplicial complexes
Autor: | Schrödl, Michael |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s00229-019-01131-y |
Popis: | We define unimodular measures on the space of rooted simplicial complexes and associate to each measure a chain complex and a trace function. As a consequence, we can define $\ell^2$-Betti numbers of unimodular random rooted simplicial complexes and show that they are continuous under Benjamini-Schramm convergence. Comment: Added references and Example 19; small corrections in the proof of Lemma 4 |
Databáze: | arXiv |
Externí odkaz: |