Classification of planar rational cuspidal curves. II. Log del Pezzo models

Autor: Palka, Karol, Pełka, Tomasz
Rok vydání: 2018
Předmět:
Zdroj: Proc. Lond. Math. Soc. 120 (2020), No. 5, 642-703
Druh dokumentu: Working Paper
DOI: 10.1112/plms.12300
Popis: Let $E\subseteq \mathbb{P}^2$ be a complex curve homeomorphic to the projective line. The Negativity Conjecture asserts that the Kodaira-Iitaka dimension of $K_X+\frac{1}{2}D$, where $(X,D)\to (\mathbb{P}^{2},E)$ is a minimal log resolution, is negative. We prove structure theorems for curves satisfying this conjecture and we finish their classification up to a projective equivalence by describing the ones whose complement admits no $\mathbb{C}^{**}$-fibration. As a consequence, we show that they satisfy the Strong Rigidity Conjecture of Flenner-Zaidenberg. The proofs are based on the almost minimal model program. The obtained list contains one new series of bicuspidal curves.
Comment: 50 pages
Databáze: arXiv