Analysis of the controllability from the exterior of strong damping nonlocal wave equations

Autor: Warma, Mahamadi, Zamorano, Sebastian
Rok vydání: 2018
Předmět:
Druh dokumentu: Working Paper
Popis: We make a complete analysis of the controllability properties from the exterior of the (possible) strong damping wave equation with the fractional Laplace operator subject to the nonhomogeneous Dirichlet type exterior condition. In the first part, we show that if $0 0$, then there is no control function $g$ such that the following system \begin{equation*} \begin{cases} u_{tt} + (-\Delta)^{s} u + \delta(-\Delta)^{s} u_{t}=0 & \mbox{ in }\; \Omega\times(0,T),\\ u=g\chi_{\mathcal O\times (0,T)} &\mbox{ in }\; (\Omc)\times (0,T) ,\\ u(\cdot,0) = u_0, u_t(\cdot,0) = u_1 &\mbox{ in }\; \Omega, \end{cases} \end{equation*} is exact or null controllable at time $T>0$. In the second part, we prove that for every $\delta\ge 0$ and $00$ and $g\in \mathcal D(\mathcal O\times(0,T))$, where $\mathcal O\subset\Omc$ is any non-empty open set.
Databáze: arXiv