Unextendible Maximally Entangled Bases in $\mathbb{C}^{pd}\otimes \mathbb{C}^{qd}$

Autor: Zhang, Gui-Jun, Tao, Yuan-Hong, Han, Yi-Fan, Yong, Xin-Lei, Fei, Shao-Ming
Rok vydání: 2018
Předmět:
Zdroj: Quantum Information Processing( 2018) 17:318
Druh dokumentu: Working Paper
DOI: 10.1007/s11128-018-2094-4
Popis: The construction of unextendible maximally entangled bases is tightly related to quantum information processing like local state discrimination. We put forward two constructions of UMEBs in $\mathbb {C}^{pd}\otimes \mathbb {C}^{qd}$($p\leq q$) based on the constructions of UMEBs in $\mathbb {C}^{d}\otimes \mathbb {C}^{d}$ and in $\mathbb {C}^{p}\otimes \mathbb {C}^{q}$, which generalizes the results in [Phys. Rev. A. 94, 052302 (2016)] by two approaches. Two different 48-member UMEBs in $\mathbb {C}^{6}\otimes \mathbb {C}^{9}$ have been constructed in detail.
Databáze: arXiv