Fractal Weyl bounds and Hecke triangle groups
Autor: | Naud, Frederic, Pohl, Anke, Soares, Louis |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\Gamma_{w}$ be a non-cofinite Hecke triangle group with cusp width $w>2$ and let $\varrho\colon\Gamma_w\to U(V)$ be a finite-dimensional unitary representation of $\Gamma_w$. In this note we announce a new fractal upper bound for the Selberg zeta function of $\Gamma_{w}$ twisted by $\varrho$. In strips parallel to the imaginary axis and bounded away from the real axis, the Selberg zeta function is bounded by $\exp\left( C_{\varepsilon} \vert s\vert^{\delta + \varepsilon} \right)$, where $\delta = \delta_{w}$ denotes the Hausdorff dimension of the limit set of $\Gamma_{w}$. This bound implies fractal Weyl bounds on the resonances of the Laplacian for all geometrically finite surfaces $X=\widetilde{\Gamma}\backslash\mathbb{H}$ where $\widetilde{\Gamma}$ is a finite index, torsion-free subgroup of $\Gamma_w$. Comment: 10 pages, 1 figure |
Databáze: | arXiv |
Externí odkaz: |