Trading locality for time: certifiable randomness from low-depth circuits
Autor: | Coudron, Matthew, Stark, Jalex, Vidick, Thomas |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The generation of certifiable randomness is the most fundamental information-theoretic task that meaningfully separates quantum devices from their classical counterparts. We propose a protocol for exponential certified randomness expansion using a single quantum device. The protocol calls for the device to implement a simple quantum circuit of constant depth on a 2D lattice of qubits. The output of the circuit can be verified classically in linear time, and is guaranteed to contain a polynomial number of certified random bits assuming that the device used to generate the output operated using a (classical or quantum) circuit of sub-logarithmic depth. This assumption contrasts with the locality assumption used for randomness certification based on Bell inequality violation or computational assumptions. To demonstrate randomness generation it is sufficient for a device to sample from the ideal output distribution within constant statistical distance. Our procedure is inspired by recent work of Bravyi et al. (Science 2018), who introduced a relational problem that can be solved by a constant-depth quantum circuit, but provably cannot be solved by any classical circuit of sub-logarithmic depth. We develop the discovery of Bravyi et al. into a framework for robust randomness expansion. Our proposal does not rest on any complexity-theoretic conjectures, but relies on the physical assumption that the adversarial device being tested implements a circuit of sub-logarithmic depth. Success on our task can be easily verified in classical linear time. Finally, our task is more noise-tolerant than most other existing proposals that can only tolerate multiplicative error, or require additional conjectures from complexity theory; in contrast, we are able to allow a small constant additive error in total variation distance between the sampled and ideal distributions. Comment: 36 pages, 2 figures |
Databáze: | arXiv |
Externí odkaz: |