A Study of quasi-Gorenstein rings II: Deformation of quasi-Gorenstein property
Autor: | Shimomoto, Kazuma, Taniguchi, Naoki, Tavanfar, Ehsan |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In the present article, we investigate the following deformation problem. Let $(R,\mathfrak m)$ be a local (graded local) Noetherian ring with a (homogeneous) regular element $y \in \mathfrak m$ and assume that $R/yR$ is quasi-Gorenstein. Then is $R$ quasi-Gorenstein? We give positive answers to this problem under various assumptions, while we present a counter-example in general. We emphasize that absence of the Cohen-Macaulay condition requires some delicate studies. Comment: To appear in J. Algebra |
Databáze: | arXiv |
Externí odkaz: |