Maximal almost disjoint families, determinacy, and forcing
Autor: | Haga, Karen Bakke, Schrittesser, David, Törnquist, Asger |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Journal of Mathematical Logic Vol. 22, No. 01, 2150026 (2022) |
Druh dokumentu: | Working Paper |
DOI: | 10.1142/S0219061321500264 |
Popis: | We study the notion of $\mathcal J$-MAD families where $\mathcal J$ is a Borel ideal on $\omega$. We show that if $\mathcal J$ is an arbitrary $F_\sigma$ ideal, or is any finite or countably iterated Fubini product of $F_\sigma$ ideals, then there are no analytic infinite $\mathcal J$-MAD families, and assuming Projective Determinacy there are no infinite projective $\mathcal J$-MAD families; and under the full Axiom of Determinacy + $V=\mathbf{L}(\mathbb{R})$ there are no infinite $\mathcal J$-mad families. These results apply in particular when $\mathcal J$ is the ideal of finite sets $\mathrm{Fin}$, which corresponds to the classical notion of MAD families. The proofs combine ideas from invariant descriptive set theory and forcing. Comment: 40 pages |
Databáze: | arXiv |
Externí odkaz: |