Popis: |
This paper explores using a Long short-term memory (LSTM) based sequence autoencoder to learn interesting features for detecting surveillance aircraft using ADS-B flight data. An aircraft periodically broadcasts ADS-B (Automatic Dependent Surveillance - Broadcast) data to ground receivers. The ability of LSTM networks to model varying length time series data and remember dependencies that span across events makes it an ideal candidate for implementing a sequence autoencoder for ADS-B data because of its possible variable length time series, irregular sampling and dependencies that span across events. |