Spectrum of the Laplacian on Regular Polyhedra
Autor: | Greif, Evan, Kaplan, Daniel, Strichartz, Robert S., Wiese, Samuel C. |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study eigenvalues and eigenfunctions of the Laplacian on the surfaces of four of the regular polyhedrons: tetrahedron, octahedron, icosahedron and cube. We show two types of eigenfunctions: nonsingular ones that are smooth at vertices, lift to periodic functions on the plane and are expressible in terms of trigonometric polynomials; and singular ones that have none of these properties. We give numerical evidence for conjectured asymptotic estimates of the eigenvalue counting function. We describe an enlargement phenomenon for certain eigenfunctions on the octahedron that scales down eigenvalues by a factor of $\frac{1}{3}$. Comment: 26 pages |
Databáze: | arXiv |
Externí odkaz: |